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A METHOD FOR THE SOLUTION OF STOCHASTIC
PROBLEMS IN LINEAR THERMOELASTICITY AND
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Abstract-A method for the determination-in the sense of correlation theory, linear thermoelasticity and
heat conduction--of the properties of temperature, stress and displacement in elastic bodies is given. The
bodies are stressed by random surface forces and are surrounded by a medium with randomly distributed
temperature. Both functions may be random with respect to space and time. The method may be used to
derive exact solutions but is perhaps better adaptable for the determination of approximate solutions. One
simple example is given,

INTRODUCTION

SPECIAL CASES of the problem of determining the mean values and the correlation functions
of temperature, stress and displacement in elastic bodies, stressed by random surface
forces and surrounded by a medium with randomly distributed temperature have been
treated-always in the sense of linear thermoelasticity-in the literature [1-5].

Parkus [1-3] gives some fundamental relations for temperature and corresponding
thermal stresses. The surfaces of the bodies are assumed to be free of tractions, the
influence of the coupling between temperature and strain field is ignored. The spatial
distribution of the random temperature of the surrounding medium is assumed to be
deterministic. In [4, 5] the surface forces and the temperature of the medium surrounding
the body are randomly distributed, both with respect to time and space. The influence of
coupling and inertia, however, is ignored.

In all examples treated in these papers, exact expressions for the double Laplace
transforms of the correlation functions are derived. These expressions are then inverted,
exactly or approximately. .

Although most of these examples are simple the numerical labor is high. Very often
it is impossible to give solutions in the form of tabulated functions [5].

The method described in this paper starts from the variational principle of linear
thermodynamics introduced and extensively studied by Biot. It may be used for the
determination of exact solutions, usually in the form of infinite series, as well as for the
derivation of approximate solutions.

Using the variational principle obtained by Biot from thermodynamical considera­
tions [6-9] the solution of the deterministic problem is given with the aid of Ritz method
in Section 1. The equations for expectation and correlation functions are given in Sec­
tion 2; they are discussed using one simple example of heat conduction in Section 3.

* The research reported in this paper has been sponsored by the United States Government under Contract
61 (052)-645.
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It should be mentioned that a series of similar methods can be derived in the same
manner as described in this paper from other variational principles such as the principles
introduced by Parkus [10], Herrmann [11-13], Olszak and Perzyna [14], and Schapery
[15].

1. THE DETERMINISTIC PROBLEM

Formulating the variational principle Biot described the thermodynamic state of an
elastic body by two vector fields. One is the displacement field Ui(X I' X2' X 3, t) of the solid.
The other is the field of entropy displacement Si(X1, X2' X3' t), whose components are the
amounts of heat which have flown in given directions divided by the absolute temperature
To of the undeformed state, whose existence is postulated. The variation applies to all six
components of the two vector fields.

The functions

(1.1)

(1.2)

with generalized coordinates qi,a. and ~i,a. are admissible for the variational principle for
suitably chosen functions

Ui,a.{X I , X2' X3)'} i = 1,2,3

Si,ixI' X2' X3) IX = 1,2, ...

They have to be general enough so that each system Ui and Si admissible for the variational
principle can be approximated by mUi and nSi in such a manner that with sufficiently
large m, n the values of the functions, the values of the kinetic energy

f i (au.) 2

T=! v P L at' dV,

and the value of the "dissipation function"

_ To [f Lij • aS j aS j d f I (asn) 2 dAlD -- A. ..-- v+ --
r 2 I] at at K at

v s
(1.3)

(1.4)

can be approximated to any desired degree of accuracy. The mass per unit volume is
denoted by P, the coefficient of heat transfer by K, the inverse of the thermal conductivity
by A.ij and the component of entropy displacement in the direction of the surface normal
ni (positive outwards) by Sn' The mUi must satisfy the kinematic boundary conditions with

b
. 1

ar ltrary qi,a.'

The equations for the generalized coordinates are derived from the Lagrangian equa­
tions corresponding to the variational principle:

i(aT) aDt av, = Qdt aq + aq + aq .
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Here q stands for qi,a., ~i,a., respectively, and Q for the generalized mechanical forces

Qi,a. = LFiui,a. dA,

and for
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(1.5)

(1.6)

(1.7)

respectively. Fi are the components of the surface forces per unit area and (}m = Tm - To,
where Tm is the absolute temperature of the surrounding medium. The thermoelastic
potential is defined by

f.( Ie) f[ IT.(i as ij )2J
JI;= V W+ 2To (}2 dV= v W+"2eo Lax:+'IPiJ-Gij dV,

where W is the elastic potential
ijkl

W = t 'I CijkI6ih"

e the specific heat per unit volume and fixed deformation, (} the temperature increment
and Pij are the coefficients of Hooke's law

kl

aij = 'I Cijkl6kl- Pij(}'

Constructing column matrices q1' q2' P1 and P2' using qi,/J and Qi,/J as elements of qa.
and Pa. with the row number 3(f3-1)+i, the kinetic energy and dissipation function are
quadratic forms in (it and (b respectively, while the thermoelastic potential appears as
sum of quadratic forms and a bilinear form in q1 and q2'

Employing the symbol D = d/dt and the matrices

(1.8)

the 3m +3n linear ordinary differential equations derived from equation (1.4) can be
written in the simple form

L(D)q = P,

where L(D) is a matrix of the form

L(D) = [~~!~~2~i--_~1~_-J
V21 I DD+V22 .

(1.9)

(1.10)

and V21 is the transposed matrix of V12

V 21 = V12•

Let the body at t < 0 be in its undeformed state (6ij = 0, (} = 0). The initial values of
the generalized coordinates vanish in this case. Denoting the Laplace transform of a
function F(t) by F*(s), the inverse of the matrix L by L- 1 the Laplace transform of q is



584

given by
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q*(s) = L -t(S)p*(S). (1.11)

Replacement of T in the matrix L by the null matrix renders the equations for the
quasistatic case.

2. THE RANDOM PROBLEM

If the surface forces or the temperature of the surrounding medium are randomly
distributed, the elements of the column matrix p are random functions together with the
generalized coordinates.

The order of taking expectations, mean square differentiation, m.s. limits and ms.
integration may be interchanged [16, §5.1]. Interpreting differentials, limits and integrals
of stochastic functions always in the m.s. sense the equations of Section 1 remain valid if
the random functions are replaced by their mean values. Denoting the mean value of a
random function x by <x), the Laplace transform of the mean value of q can be written
in the form

<q)* = L -t(s)<p)*.

The expressions (1.1) are valid for each realization. The corresponding correlation
functions of the components of solid and entropy displacement can be represented,
accordingly, in the form of double series

(2.1)

The correlation functions aij.<lp, bij.<lp and cij.<lP are the expected values of the products
of the generalized coordinates 4and q. For instance,

t t
aij.<lp(tb t 2 ) = <Qi.<l(tt)Qj.p(t2 )·

Accordingly, they are the elements with row number 3(IX-l)+i and column number
3(fJ -1)+ j of the matrices Qtt, Q12 and Q22 defined by

(2.2)

The correlation function of the Laplace transform of a function x(t) is identical with
the double Laplace transform of the correlation function Rxx = <x(t dX(t2) of this
function [2]

R::(st, S2) = <x*(St)X*(S2) == .,5f2{Rxx(tl> t2)}·

The elements with row number 3(IX-l)+i and column number 3(fJ-l)+j of the
matrices Ptt, P 12 and P 22 defined by

(2.3a)
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are the integrals

t t <Fi(Pb tt)FiP2' t2»Ui,Il(Pt )uj,p(P2) dPt dP2, }

fsL<Fi(Pt , tt)8m(P2, t2»Ui,Il(Pt)niP2)Sj.P(P2) dPt dP2,

f f <Om(Pt, tdOm(P2, t2»ni(Pt)Si,Il(Pt)nj(P2)Sj,P(P2) dPt dP2·
s s

The matrix Q
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(2.3b)

(24)Q(t b t 2 ) = <q(tt)ii(t2» = [_~t2+9~~J
Q2t I Q22

and its partitioned matrices Q11' Q12 and Q22 can be determined with the aid of the
matrix

(2.5)

and equation (1.11), valid for each realization, from the equation

If the input of a damped system is a stationary process this is, after a sufficiently long
time, also true for the output. The simplest way for the determination of the correlation
functions for large time is via the spectral densities S.

The Wiener-Chintschin formulas relate the spectral densities with their correlation
functions. Let ~{F(t)} denote the Fourier cosine transform of a real function F(t)

~{F(t)} = j~ f: F(t) cos wt dt.

With r = It 2 - ttl these formulas can be written in the form

(2.7)

(2.8)

The spectral density of an input x(t) is related to the spectral densities of two outputs
y(t) and z(t) by

Syiw) = Hiw)Hy(w)Sxx(w),

Syz(w) = Hiw)Hz(w)Sxx(w),

where Hy(w) and Hz(w) are the frequency response functions of y(t) and z(t), respectively,

and H(w) denotes the conjugate complex of H(w).
For the values of the matrix Q for large time, one obtains the simple equation

where the notation

has been used.

Q(r) = ~{L -t( - iw)S(w)L -t(iw)},

S(w) = ~{P(r)}

(2.9)

(2.10)
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With the aid of the correlation functions aij.l%p, bij.l%p and Cij.I%P the correlation functions
of temperature, deformation and stress can be determined too.

If the surface forces and the temperature of the surrounding medium are linearly
independent and if one of the mean values is zero, the elements of the matrices P 12 and P 21

vanish. In addition, the elements of the corresponding matrix P 11 or P 22 vanish in the
case of vanishing surface forces or vanishing medium temperature. The equations simplify
then considerably.

3. EXAMPLE

The example given in [4] of determining the covariance of the temperature in an
infinite, homogeneous and isotropic circular cylinder shall now be treated using the
method described above. The cylinder of radius R with its axis coinciding with X3 is
initially at zero temperature. From time t = 0 on, the random temperature°0 , independent
of the coordinate X3, is imposed on the lateral surface of the cylinder.

For each cross-section X 3 = const., lying in the finite, we have a two-dimensional
problem of heat conduction. Using circular-cylindrical coordinates r, 8, Z == X3, the co­
variance of the temperature of two points on the surface is assumed to be given by

C exp( - K1d2 - K21t2-t 11),

where r12 denotes the distance of the points Pl(R, 8 1) and P2(R,8 2)

2 [ . 82 -81J2r12 = 2Rsm--
2

- .

(3.1 )

It has been noted by Biot [17] that the number of generalized coordinates necessary
for the determination of the temperature can be reduced considerably using special
systems of functions. The equations of these generalized coordinates decouple from each
other and also from the remaining equations necessary for the calculation of the entropy
displacement.

Using the expansion

k 1% 1 001%
Si = -;:;:;-Ll~ql%

10 11.1% uX,

where AI% are the eigenvalues and 01% the eigenfunctions of the eigenvalue problem

with boundary condition

i BO
KO +kLn.-1% = 0

1% • OXi

the temperature can be represented by the series

a is the thermal diffusivity, a = k/c.

(3.2)

(3.3)

(3.4)

(3.5a)
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In the problem under consideration boundary condition (3.3) has to be replaced by

()a = O. (3.5b)

The normalized eigenfunctions ()a of this problem are [18, p. 254]

j en JJin.ap){COSn9
(3.6)

11: RJ~(jn.J sin n9,

where P = rJR. I n denotes the Bessel function of the first kind with in.a as its zeros

JnUn) = O.

J~(z) indicates derivatives with respect to the argument

J'( ) = dJn(z)
n z dz'

en is the Neumann factor

e = {1
n 2

n=O

n'# O.

(3.7)

(3.8)

Due to the orthogonality of the eigenfunctions V22 is a diagonal matrix. The eigen­
functions are normalized and

1 c f 2Vr=-- () dV.
2 To v

The values of the diagonal elements are therefore

!-JRf2" ();r dr d9 = !-.
To 0 0 To

The eigenfunctions diagonalize also the matrix D. The diagonal elements can be
calculated easily remembering that ()a exp( - Aat) is a solution of the heat conduction
equation with vanishing temperature. This immediately yields the diagonal elements of 0 :

d = _c_ (3.9)
aa ToAa

The elements of the matrix PH can be calculated easily with the aid of the residue
theorem. Introducing Kronecker's symbol bmn one has

f

2"f2" 4 2R2
,exp( -Kt ri2) cos m9t cos n92 dS t dS2 = _1I:__ exp( -2KtR2)In(2KtR2)bmn,

o 0 en

f

2"f2" 411;2R2
exp( -Ktri2) sin m9 t sin n92 dS t dS2 = -e-exp( -2KtR2)In(2KtR2)bmn n'# 0,

o 0 n

where In are the modified Bessel functions of the first kind. The integrals

f:"J:" exp( -Kt rI2) cos m9 t sin n92 dS t ds2,

vanish.
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With the abbreviations

00 afJ

C L Cncos n(82-8d I Fa(p1)Fp(P2)GaP(t1, t2)·
n=O

(3.10)

(3. 11a)

(3.l1b)

(3.12)

This expression vanishes at r = R and, therefore, does not converge uniformly in the
region r :s; R. To evaluate it for points close to the boundary with satisfactory accuracy
a great number of terms has to be retained. Frequently, however, (3.12) can be transformed
into a well converging series. For instance, putting P1 = P2 and t1 = t2 = t the variance
can be represented in the special case K2 = 0 and (a/R 2)t ~ 1 by the uniformly converging
senes

00

C exp( -2K1R2) L Bnln(2K1R2)p2n
n=O

using [4, p. 302]

2t JnUn.aP) =_pn.
jn,aJ n- 1Un,a)

This series agrees with the series obtained in [4].
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Resume--Une methode pour la determination des proprietes de temperature, de travail et de deplacement dans
les corps elastiques y est donnee en fonction d'une theorie de correlation de la thermo-elasticite lineaire et de la
conduction de la chaleur. Les corps sont soumis au travail au moyen de forces superficielles quelconques et
sont environnes par un milieu de distribution de temperature quelconque egalement. Les deux fonctions sont
de tout-venant tant soit pour Ie temps que pour l'espace. La methode peut etre utilisee pour en deriver des
solutions exactes mais pourrait possiblement etre mieux adaptee a la determinations de solutions approxima­
tives. Un exemple si.llple y est donne.

Zusammenfassung-In der vorliegenden Arbeit wird eine Methode zur Bestimmung der korrelationstheoret­
ischen Eigenschaften des Temperatur-, des Spannungs- und des Verschiebungsfeldes in elastischen Kiirpern,
die durch zufallsabhangige Oberflachenkrafte beansprucht werden und die sich in einem Medium mit zufallsab­
hangiger Temperatur befinden, im Rahmen der linearen Thermoelastizitat angegeben. Die Zufallsfunktionen,
die Oberflachenkrafte und die Umgebungstemperatur, kiinnen dabei sowohl iirtlich wie auch zeitlich zufiillig
verteilt sein. Die Methode ist geeignet zur Bestimmung korrelationstheoretisch exakter Liisungen und zur
Herleitung von Niiherungsliisungen. Ein einfaches Beispiel wird angegeben.

AOCTpaKT-)l,ahcli MeTO,ll ,llJlll onpe,lleJleHHlI-B CMblCJle TeopHH COOTHOIlleHl1l1 (KopeflJllll.\HH) JlI1HeHHOH
TepM03JlaCTH'IHOCTIi H npOBO,llHMOCTH TenJla-CBOHCTB TeMnepaTypbl, HanplilKeHHlI, H CMell.\eHHlI B
ynpyrHx TeJllX. TeJJa na,llBepralOTCli HanplilKeHHIO CJlyraHHblx nOBepxHocTHbIX CHfl H OKpYlKeHbl
CpeL\OH co CJly'laHHo pacnpe,lleHHOH TeMnepaTypoH. 06e Q>YHKl.\HH MoryT 6bITb CJlY'laHHbIMH, npHHHMali
BO BHHMaHHe npocTpaHcTBo Jot BpeMli. MeTO,ll MOlKeT npHMeHlITbCli ,llJlll Toro, '1To6bl BbIBeCTH TO'lHble pew­
eHHlI, HO, MOlKeT 6bITb 60Jlee npHeMJleM ,llflll Onpe,llefleHHlI npH6flH3JotTeJlbHbll> peWeHI1H. )l,aeTcli O,llHH
npocToH npHMep.


